10 de mayo de 2013

TIPOS DE REFRIGERACIÓN DE UN PC


CRIOGENIA

Incluso más raro que la refrigeración por cambio de fase es aquella basada en la criogenia, que utiliza nitrógeno líquido o hielo seco (dióxido de carbono sólido). Estos materiales son usados a temperaturas extremadamente bajas (el nitrógeno líquido ebulle a los -196ºC y el hielo seco lo hace a -78ºC) directamente sobre el procesador para mantenerlo frío. Sin embargo, después que el líquido refrigerante se haya evaporado por completo debe ser reemplazado. Daño al procesador a lo largo del tiempo producto de los frecuentes cambios de temperatura es uno de los motivos por los que la criogenia sólo es utilizada en casos extremos de overclocking y sólo por cortos periodos de tiempo.

Claramente cada método de refrigeración tiene ventajas y desventajas. Algunos son caros y bulliciosos, otros no lo suficientemente poderosos, algunos requieren de instalaciones complejas e incluso existen aquellos que pueden dañar el procesador. Buscando crear un disipador (cooler) barato, silencioso y altamente confiable capaz de disipar efectivamente el calor de incluso los procesadores más demandantes de gama alta, Tecnologías Avanzadas Kronos (Kronos Advanced Technologies) dominó un principio físico antiguo conocido como el efecto de descarga corona.









PROPULSIÓN DE AIRE ELECTROSTÁTICO Y EL EFECTO DE DESCARGA CORONA

Un nuevo tipo de tecnología de refrigeración ultra-delgada y silenciosa para procesadores está siendo desarrollada por Tecnologías Avanzadas Kronos en colaboración con Intel y la Universidad de Washington. En dos años, esta nueva tecnología podría reemplazar las actuales técnicas de enfriamiento por ventiladores en notebooks y otros dispositivos portátiles, volviéndolos más confiables y mucho más silenciosos.
La tecnología de refrigeración que está siendo desarrollada por Kronos emplea un dispositivo llamado “bomba de viento iónico” (ionic wind pump), un acelerador de fluidos electrostáticos cuyo principio básico de operación es la descarga por efecto corona. Este fenómeno ocurre cuando el potencial de un conductor cargado alcanza una magnitud tal que sobrepasa la rigidez dieléctrica del fluído que lo rodea (por ejemplo aire) este aire, que en otras circunstancias es un excelente aislante, se ioniza y los iones son atraídos y repelidos por el conductor a gran velocidad, produciéndose una descarga eléctrica que exhibe penachos o chispas azules o púrpura, y que a su vez moviliza el fluido. La descarga por efecto corona es similar a lo que ocurre con la caída de un rayo, salvo porque en ese caso no hay un conductor propiamente tal, la diferencia de potencial eléctrico es tan enorme que los rayos son capaces de atravesar fácilmente 5 kilómetros de aire, que por lo general es uno de los mejores aislantes que existen.
El principio de la propulsión de aire iónico con partículas cargadas por el efecto corona se conoce casi desde el momento en que se descubrió la electricidad. Una de las primeras referencias a la detección de movimiento de aire cerca de un tubo cargado apareció hace unos 300 años en un libro de Francis Hauksbee y muchos pioneros de la electricidad, incluyendo a Newton, Faraday y Maxwell, estudiaron este fenómeno. En los tiempos modernos la descarga corona se utilizó de variadas maneras y se aplicó en la industria de la fotocopia, en algunos sistemas de aire acondicionado, en lásers de nitrógeno y más notoriamente en ionizadores de aire. Kronos, que desarrolla filtros de aire de alta eficiencia basados en el efecto corona, intentó adaptar la tecnología a la refrigeración de microprocesadores. Con la ayuda de N. E. Jewell-Larsen, C.P. Hsu y A. V. Mamishev del Departamento de Ingeniería Eléctrica (Department of Electrical Engineering) en la Universidad de Washington (Washington University) e Intel, crearon varios prototipos funcionales de un disipador (cooler) de CPU basado en el efecto corona, que puede enfriar efectiva y silenciosamente una CPU moderna.
El disipador de efecto corona desarrollado por Kronos trabaja de la siguiente manera: Un campo eléctrico de gran magnitud es creado en la punta del cátodo, que se coloca en un lado de la CPU. El alto potencial de energía causa que las moléculas de oxígeno y nitrógeno en el aire se ionicen (con carga positiva) y creen una corona (un halo de partículas cargadas). Al colocar un ánodo unido a tierra en el lado opuesto de la CPU se hace que los iones cargados en la corona aceleren hacia el ánodo, chocando con moléculas neutras de aire en el camino. Durante estas colisiones, se transfiere moméntum desde el gas ionizado a las moléculas de gas neutras, resultando en un movimiento de aire hacia el ánodo.
Las ventajas de los disipadores (coolers) basados en el efecto de descarga corona son obvias: no tienen partes móviles, lo que elimina ciertos problemas de confiabilidad, puede refrigerar efectivamente incluso los procesadores más avanzados y demandantes y opera con un nivel de ruido de prácticamente cero con un consumo moderado de energía



CAMBIO DE FASE POR VIBRACIÓN


El Vibration Induced Droplet Atomization (VIDA) es un sistema experimental que probablemente nunca se utilizará comercialmente pero por lo ingenioso que resulta vale la pena mencionarlo. En rigor, dudé mucho si ubicarlo como un subconjunto de los sistemas de cambio de fase porque el principio de su funcionamiento no se basa en el ciclo térmico que inventó Carnot, pero de todos modos el fenómeno físico mediante el cual se retira calor es en buenas cuentas un cambio de fase.
El VIDA opera de la siguiente manera: atomizando un fluido que puede ser simplemente agua, y sometiéndolo a una intensa vibración, se logra que éste pase al estado gaseoso a temperatura ambiente. Al evaporarse, el agua (o el líquido que se utilice) toma una gran cantidad de calor del medio circundante. En otras palabras, una gótula de agua lo suficientemente pequeña y convenientemente zangoloteada se convertirá en vapor espontáneamente, y si logras que ello ocurra en contacto con la superficie deseada, el agua retirará de ella una gran cantidad de calor.
El sistema VIDA fué planteado por primera vez en marzo del 2005 y te lo contamos en esta noticia.


CAMBIO DE FASE


Los sistemas de enfriamiento por cambio de fase se basan en la misma máquina térmica que opera en todo refrigerador. Aunque los sistemas han cambiado mucho desde los primeros refrigeradores -empezando por el abandono de los gases que eran dañinos para el medio ambiente- el principio es el mismo: utilizar a nuestro favor la ley de los gases perfectos y las propiedades termodinámicas de un gas para instigarlo a tomar o ceder calor del o al medio ambiente en distintos puntos del ciclo.
El cambio de fase es el método de enfriamiento preferido en refrigeradores comerciales y algunos sistemas de aire acondicionado, pero en el campo de la computación se ve muy poco. En un primer acercamiento algunos técnicos en refrigeración aficionados al overclock implementaron máquinas artesanales para aplicar refrigeración por cambio de fase al PC, pero en los últimos años se viene viendo de forma cada vez más frecuente la aparición de sistemas comerciales, más compactos, estilizados y -por supuesto- caros.
Los overclockeros extremos no miran con muy buenos ojos estas soluciones comerciales principalmente por dos razones. Primero, las necesidades de enfriamiento de cada plataforma son distintas, y aunque es improbable que el PC vaya a calentarse utilizando un sistema de cambio de fase, sí puede darse que la solución comercial sea insuficiente para llegar a temperaturas extremadamente bajas. En segundo lugar, hoy por hoy el ciclo clásico que se ilustra en el esquema ha sido refinado y paulatinamente reemplazado por circuitos en cascada, en donde hay varios ciclos de refrigeración por cambio de fase y cada uno enfría al siguiente.



REFRIGERACIÓN POR HEATPIPES

Un heatpipe es una máquina térmica que funciona mediante un fenómeno llamado "convección natural". Este fenómeno, derivado de la expansión volumétrica de los fluidos, causa que al calentarse los fluidos tiendan a hacerse menos densos, y viceversa. En un mismo recipiente, el calentamiento de la base producirá la subida del fluido caliente de abajo y la bajada del fluido aún frío de la parte superior, produciéndose una circulación.
El sistema de heatpipes que se utiliza en los coolers de CPU es un ciclo cerrado en donde un fluído similar al que recorre nuestros refrigeradores se calienta en la base, en contacto con el CPU, se evapora, sube por una tubería hasta el disipador, se condensa y baja como líquido a la base nuevamente.
El transporte de calor que se logra mediante el uso de heatpipes es muy superior al que alcanza un disipador de metal tradicional, por delgadas o numerosas que sean sus aletas. Sin embargo, sería poco ambicioso dejar que los heatpipes hicieran todo el trabajo, por lo que los productos comerciales que han incorporado el elemento heatpipe complementan su alta capacidad de transporte de calor con voluminosos panales de aluminio o cobre (en buenas cuentas, un heatsink) y ventiladores que mueven bastante caudal de aire.









REFRIGERACIÓN TERMOELÉCTRICA (TEC)

En 1834 un frances llamado Juan Peltier (no es chiste, la traducción al español de Jean Peltier), descubrió que aplicando una diferencia eléctrica en 2 metales o semiconductores (de tipo p y n) unidas entre sí, se generaba una diferencia de temperaturas entre las uniones de estos. La figura de abajo muestra que las uniones p-n tienden a calentarse y las n-p a enfriarse.
El concepto rudimentario de Peltier fue paulatinamente perfeccionado para que fuera un solo bloque con las uniones semiconductoras, (que generalmente son en base a Seleniuro de Antimonio y Telururo de bismuto) conectadas por pistas de cobre y dispuestas de tal manera, que transportara el calor desde una de sus caras hacia la otra, haciendo del mecanismo una "bomba de calor" ya que es capaz de extraer el calor de una determinada superficie y llevarlo hacia su otra cara para disiparlo.
Una de las tantas gracias de estos sistemas de refrigeración que se ocupan en todo ámbito (generalmente industrial), es que son bastante versátiles, basta con invertir la polaridad para invertir el efecto (cambiar el lado que se calienta por el frío y viceversa), la potencia con que enfría es fácilmente modificable dependiendo del voltaje que se le aplique y es bastante amable con el medio ambiente ya que no necesita de gases nocivos como los usados en los refrigeradores industriales para realizar su labor.
El uso de refrigeración termoeléctrica por lo general se circunscribe al ámbito industrial, pero tanto los fanáticos como algunos fabricantes han desarrollado productos que incorporan el elemento Peltier como método para enfriar el procesador de un PC. Estas soluciones, que de por sí involucran un fuerte aumento del consumo eléctrico (toda vez que un peltier es bastante demandante de potencia) no pueden operar por sí solas, pues se hace necesario un sistema que sea capaz de retirar calor de la cara caliente del Peltier.
Este sistema complementario suele ser de enfriamiento por aire o por agua. En el primero de los casos el concepto se denomina Air Chiller y hay productos comerciales como el Titan Amanda que lo implementan. El segundo caso se denomina Water Chiller, es bastante más efectivo (por la mejor capacidad del agua de retirar calor de la cara caliente) y también hay productos, como el Coolit Freezone, que implementan el sistema.

REFRIGERACIÓN POR METAL LÍQUIDO

Aunque su principio es completamente distinto al watercooling, de alguna manera este sistema está emparentado. Se trata de un invento mostrado por nanoCoolers, compañía basada en Austin, Texas, que hace algunos años desarrolló un sistema de enfriamiento basado en un metal líquido con una conductividad térmica mayor que la del agua, constituido principalmente por Galio e Indio.
A diferencia del agua, este compuesto puede ser bombeado electromagnéticamente, eliminando la necesidad de una bomba mecánica. A pesar de su naturaleza innovadora, el metal líquido de nanoCoolers nunca alcanzó una etapa comercial.
Una explicación bastante extensa y en español puede encontrarse en Hardcore Modding.


REFRIGERACIÓN LIQUIDA POR INMERSIÓN

Una variación extraña de este mecanismo de refrigeración es la inmersión líquida, en la que un computador es totalmente sumergido en un líquido de conductividad eléctrica muy baja, como el aceite mineral. El computador se mantiene enfriado por el intercambio de calor entre sus partes, el líquido refrigerante y el aire del ambiente. Este método no es práctico para la mayoría de los usuarios por razones obvias.
Pese a que este método tiene un enfoque bastante simple (llene un acuario de aceite mineral y luego ponga su PC adentro) también tiene sus desventajas. Para empezar, debe ser bastante desagradable el intercambio de piezas para upgrade.


REFRIGERACIÓN LÍQUIDA (MÁS CONOCIDA COMO WATERCOOLING) 


Un método más complejo y menos común es la refrigeración por agua. El agua tiene un calor específico más alto y una mejor conductividad térmica que el aire, gracias a lo cual puede transferir calor más eficientemente y a mayores distancias que el gas. Bombeando agua alrededor de un procesador es posible remover grandes cantidades de calor de éste en poco tiempo, para luego ser disipado por un radiador ubicado en algún lugar dentro (o fuera) del computador. La principal ventaja de la refrigeración líquida, es su habilidad para enfriar incluso los componentes más calientes de un computador. 

Todo lo bueno del watercooling tiene, sin embargo, un precio; la refrigeración por agua es cara, compleja e incluso peligrosa en manos sin experiencia (Puesto que el agua y los componentes electrónicos no son buena pareja). Aunque usualmente menos ruidosos que los basados en refrigeración por aire, los sistemas de refrigeración por agua tienen partes móviles y en consecuencia se sabe eventualmente pueden sufrir problemas de confiabilidad. Sin embargo, una avería en un sistema de Watercooling (por ejemplo, si deja de funcionar la bomba) no es tan grave como en el caso de la refrigeración por aire, puesto que la inercia térmica del fluído es bastante alta e incluso encontrándose estático no será fácil para el CPU calentarlo a niveles peligrosos

     

REFRIGERACIÓN ACTIVA POR AIRE

La refrigeración activa por aire es, en palabras sencillas, tomar un sistema pasivo y adicionar un elemento que acelere el flujo de aire a través de las aletas del heatsink. Este elemento es usualmente un ventilador aunque se han visto variantes en las que se utiliza una especie de turbina.
En la refrigeración pasiva tiende a suceder que el aire que rodea al disipador se calienta, y su capacidad de evacuar calor del disipador disminuye. Aunque por convección natural este aire caliente se mueve, es mucho más eficiente incorporar un mecanismo para forzar un flujo de aire fresco a través de las aletas del disipador, y es exactamente lo que se logra con la refrigeración activa.
Aunque la refrigeración activa por aire no es mucho más cara que la pasiva, la solución tiene desventajas significativas. Por ejemplo, al tener partes móviles es susceptible de averiarse, pudiendo ocasionar daños irreparables en el sistema si es que esta avería no se detecta a tiempo (en otras palabras, si un sistema pensado para ser enfriado activamente queda en estado pasivo por mucho tiempo). En segundo lugar, aunque este aspecto ha mejorado mucho todos los ventiladores hacen ruido. Algunos son más silenciosos que otros, pero siempre serán más ruidosos que los cero decibeles que produce una solución pasiva.




REFRIGERACIÓN PASIVA POR AIRE

Las principales ventajas de la disipación pasiva son su inherente simplicidad (pues se trata básicamente de un gran pedazo de metal), su durabilidad (pues carece de piezas móviles) y su bajo costo. Además de lo anterior, no producen ruido. La mayor desventaja de la disipación pasiva es su habilidad limitada para dispersar grandes cantidades de calor rápidamente. Los disipadores (heatsinks) modernos son incapaces de refrigerar efectivamente CPUs de gama alta, sin mencionar GPUs de la misma categoría sin ayuda de un ventilador.

Los disipadores (heatsinks) modernos son usualmente fabricados en cobre o aluminio, materiales que son excelentes conductores de calor y que son relativamente baratos de producir. En particular, el cobre es bastante más caro que el aluminio por lo que los disipadores de cobre se consideran el formato premium mientras que los de aluminio son lo estándar. Sin embargo, si de verdad quisiéramos conductores premium podríamos usar plata para este fin, puesto que su conductividad térmica es mayor todavía. Por eso, aunque el cobre es sustancialmente más caro que el aluminio, es válido decir que ambos son materiales baratos... sólo piensen en la alternativa.



REFRIGERACIÓN POR AIRE

La refrigeración pasiva es probablemente el método más antiguo y común para enfriar no sólo componentes electrónicos sino cualquier cosa. Así como dicen las abuelitas: "tomar el fresco", la idea es que ocurra intercambio de calor entre el aire a temperatura ambiente y el elemento a enfriar, a temperatura mayor. El sistema es tan común que no es en modo alguna invención del hombre y la misma naturaleza lo emplea profusamente: miren por ejemplo a los elefantes que usan sus enormes orejas para mantenerse frescos, y no porque las usen de abanico sino porque éstas están llenas de capilares y el aire fresco enfría la sangre que por ellos circula.
El ejemplo de los elefantes se aplica, entonces, a las técnicas para enfriar componentes electrónicos, y la idea es básicamente la misma: incrementar la superficie de contacto con el aire para maximizar el calor que éste es capaz de retirar. Justamente con el objeto de maximizar la superficie de contacto, los disipadores o en inglés heatsinks consisten en cientos de aletas delgadas. Mientras más aletas, más disipación. Mientras más delgadas, mejor todavía.

7 de mayo de 2013

DISCO DURO IBM 350

File:BRL61-IBM 305 RAMAC.jpeg











El IBM 350 era parte del IBM 305 RAMAC, la computadora que introdujo al mundo la tecnología de almacenamiento en discos, el 4 de septiembre de 1956. RAMAC "Random Access Method of Accounting and Control". Su diseño fue motivado por la necesidad de sustituir las tarjetas perforadas usadas por la mayoría de los negocios de la época. Los IBM 350 podían almacenar 5 millones de caracteres de 7 bit (cerca de 4,4 megabytes). Tenían cincuenta discos de 61 cm (24 pulgadas) de diámetro con 100 superficies de grabación. Cada superficie tenía 100 pistas. Los discos giraban a 1200 RPM. La tasa de transferencia de datos era de 8800 caracteres por segundo. Dos cabezales de acceso independientes se movían hacia arriba y hacia abajo para seleccionar un disco y adentro y hacia fuera para seleccionar una pista de grabación, todo esto controlado por un servo. Se agregó un tercer cabezal opcional. En los años 50se añadieron varios modelos mejorados. La computadora IBM RAMAC 305 con el disco de almacenamiento IBM 350 se podía alquilar por unos 3200 dólares al mes. Los IBM 350 fueron retirados oficialmente en 1969.

Las dimensiones del IBM 350 eran 1,52 metros de largo, 1,73 metros de alto y 74 cm ancho. IBM tenía una regla terminante, que todos sus productos no deben sobrepasar el estándar de 75 cm (29,5 pulgadas). Puesto que los IBM 350 fueron montados horizontalmente, esta regla dictó probablemente el diámetro máximo de los discos

En una entrevista publicada en el Wall Street Journal a Currie Munce, el vice presidente de investigación de Hitachi Global Storage Technologies, que adquirieron el negocio del almacenaje de IBM, dijo que la unidad entera de RAMAC pesaba mas de una tonelada y tuvo que ser trasladada con montacargas y ser entregada usando grandes aviones de carga. Según Munce, mientras que la capacidad de almacenamiento podía ser aumentada a unos 5 megabytes, el departamento de marketing de IBM estaba en contra del aumento de la capacidad porque no sabían vender un producto con más almacenaje.

Hoy en día, el Museo de historia de la computadora, situado en Mountain View, California, dispone de una restauración del disco de almacenamiento del RAMAC.

Antiguo disco duro de IBM (modelo 62PC, «Piccolo»), de 64,5 MB, fabricado en 1979

File:IBM old hdd mod.jpg

A principios los discos duros eran extraíbles, sin embargo, hoy en día típicamente vienen todos sellados (a excepción, de un hueco de ventilación para filtrar e igualar la presión del aire).

El primer disco duro 1956 fue el IBM 350 modelo 1, presentado con la computadora Ramac I: pesaba una tonelada y su capacidad era de 5 MB. Más grande que una nevera actual, este disco duro trabajaba todavía con válvulas al vacío y requería una consola separada para su manejo.

Su gran mérito consistía en el que el tiempo requerido para el acceso era relativamente diferente entre algunas posiciones de memoria, a diferencia de las cintas magnéticas, donde para encontrar una información dada, era necesario enrollar y desenrollar los carretes hasta encontrar el dato buscado, teniendo muy diferentes tiempos de acceso para cada posición.

La tecnología inicial aplicada a los discos duros era relativamente simple. Consistía en recubrir con material magnético un disco de metal que era formateado en pistas concéntricas, que luego eran divididas en sectores. El cabezal magnético codificaba información al magnetizar diminutas secciones del disco duro, empleando un código binario de «ceros» y «unos». Los bits o dígitos binarios así grabados pueden permanecer intactos años. Originalmente, cada bit tenía una disposición horizontal en la superficie magnética del disco, pero luego se descubrió cómo registrar la información de una manera más compacta.

El mérito del francés Albert Fert y al alemán Peter Grünberg (ambos premio Nobel de Física, por sus contribuciones en el campo del almacenamiento magnético) fue el descubrimiento del fenómeno conocido como magnetorresistencia gigante, permitió construir cabezales de lectura y grabación más sensibles, y compactar más los bits en la superficie del disco duro. De estos descubrimientos, realizados en forma independiente por estos investigadores, se desprendió un crecimiento espectacular en la capacidad de almacenamiento en los discos duros, que se elevó un 60% anual en la década de 1990.

En 1992, los discos duros de 3,5 pulgadas alojaban 250 MB, mientras que 10 años después habían superado los 40.000 MB o 40 gigabytes (GB). En la actualidad, ya contamos en el uso cotidiano con discos duros de más de un terabyte (TB) o millón de megabytes.

En 2005 los primeros teléfonos móviles que incluían discos duros fueron presentados por Samsung y Nokia.

Características de un disco duro

Las características que se deben tener en cuenta en un disco duro son:

• Tiempo medio de acceso: Tiempo medio que tarda la aguja en situarse en la pista y el sector deseado; es la suma del Tiempo medio de búsqueda (situarse en la pista), tiempo de lectura/escritura y la Latencia media (situarse en el sector). 

• Tiempo medio de búsqueda: Tiempo medio que tarda la aguja en situarse en la pista deseada; es la mitad del tiempo empleado por la aguja en ir desde la pista más periférica hasta la más central del disco. 

• Tiempo de lectura/escritura: Tiempo medio que tarda el disco en leer o escribir nueva información, el tiempo depende de la cantidad de información que se quiere leer o escribir, el tamaño de bloque, el numero de cabezales, el tiempo por vuelta y la cantidad de sectores por pista. 

• Latencia media: Tiempo medio que tarda la aguja en situarse en el sector deseado; es la mitad del tiempo empleado en una rotación completa del disco. 

• Velocidad de rotación: Revoluciones por minuto de los platos. A mayor velocidad de rotación, menor latencia media. 

• Tasa de transferencia: Velocidad a la que puede transferir la información a la computadora una vez la aguja esta situada en la pista y sector correctos. Puede ser velocidad sostenida o de pico. 


• COMO FUNCIONA UN DISCO DURO.


• 1. Una caja metálica hermética protege los componentes internos de las partículas de polvo; que podrían obstruir la estrecha separación entre las cabezas de lectura/escritura y los discos, además de provocar el fallo de la unidad a causa de la apertura de un surco en el revestimiento magnético de un disco. 2. En la parte inferior de la unidad, una placa de circuito impreso, conocida también como placa lógica, recibe comandos del controlador de la unidad, que a su vez es controlado por el sistema operativo. La placa lógica convierte estos comandos en fluctuaciones de tensión que obligan al actuador de las cabezas a mover estas a lo largo de las superficies de los discos. La placa también se asegura de que el eje giratorio que mueve los discos de vueltas a una velocidad constante y de que la placa le indique a las cabezas de la unidad en que momento deben leer y escribir en el disco. En un disco IDE (Electrónica de Unidades Integradas), el controlador de disco forma parte de la placa lógica. 3. Un eje giratorio o rotor conectado a un motor eléctrico hacen que los discos revestidos magnéticamente giren a varios miles de vueltas por minuto. El número de discos y la composición del material magnético que lo s recubre determinan la capacidad de la unidad. Generalmente los discos actuales están recubiertos de una aleación de aproximadamente la trimillonésima parte del grosor de una pulgada. 4. Un actuador de las cabezas empuja y tira del grupo de brazos de las cabezas de lectura/escritura a lo largo de las superficies de los platos con suma precisión. Alinea las cabezas con las pistas que forman círculos concéntricos sobre la superficie de los discos. 5. Las cabezas de lectura/escritura unidas a los extremos de los brazos móviles se deslizan a la vez a lo largo de las superficies de los discos giratorios del HD. Las cabezas escriben en los discos los datos procedentes del controlador de disco alineando las partículas magnéticas sobre las superficies de los discos; las cabezas leen los datos mediante la detección de las polaridades de las partículas ya alineadas. 6. Cuando el usuario o su software le indican al sistema operativo que lea o escriba un archivo, el sistema operativo ordena al controlador del HD que mueva las cabezas de lectura y escritura a la tabla de asignación de archivos de la unidad, o FAT en DOS (VFAT en Windows 95). El sistema operativo lee la FAT para determinar en que Cluster del disco comienza un archivo preexistente, o que zonas del disco están disponibles para albergar un nuevo archivo. 7. Un único archivo puede diseminarse entre cientos de Cluster independientes dispersos a lo largo de varios discos. El sistema operativo almacena el comienzo de un archivo en los primeros Cluster que encuentra enumerados como libres en la FAT. Esta mantiene un registro encadenado de los Cluster utilizados por un archivo y cada enlace de la cadena conduce al siguiente Cluster que contiene otra parte mas del archivo. Una vez que los datos de la FAT han pasado de nuevo al sistema operativo a través del sistema electrónico de la unidad y del controlador del HD, el sistema operativo da instrucciones a la unidad para que omita la operación de las cabezas de lectura/escritura a lo largo de la superficie de los discos, leyendo o escribiendo los Cluster sobre los discos que giran después de las cabezas. Después de escribir un nuevo archivo en el disco, el sistema operativo vuelve a enviar las cabezas de lectura/escritura a la FAT, donde elabora una lista de todos los Cluster del archivo.

Disco duro


En informática, un disco duro o disco rígido (en inglés Hard Disk Drive, HDD) es un dispositivo de almacenamiento de datos no volátil que emplea un sistema de grabación magnética para almacenar datos digitales. Se compone de uno o más platos o discos rígidos, unidos por un mismo eje que gira a gran velocidad dentro de una caja metálica sellada. Sobre cada plato, y en cada una de sus caras, se sitúa un cabezal de lectura/escritura que flota sobre una delgada lámina de aire generada por la rotación de los discos.


El primer disco duro fue inventado por IBM en 1956. A lo largo de los años, los discos duros han disminuido su precio al mismo tiempo que han multiplicado su capacidad, siendo la principal opción de almacenamiento secundario para PC desde su aparición en los años 1960.1 Los discos duros han mantenido su posición dominante gracias a los constantes incrementos en la densidad de grabación, que se ha mantenido a la par de las necesidades de almacenamiento secundario.


Los tamaños también han variado mucho, desde los primeros discos IBM hasta los formatos estandarizados actualmente: 3,5 " los modelos para PC y servidores, 2,5 " los modelos para dispositivos portátiles. Todos se comunican con la computadora a través del controlador de disco, empleando una interfaz estandarizada. Los más comunes hasta los años 2000 han sido IDE (también llamado ATA o PATA), SCSI (generalmente usado en servidores y estaciones de trabajo). Desde el 2000 en adelante ha ido masificándose el uso de los Serial ATA. Existe además FC (empleado exclusivamente en servidores).


Para poder utilizar un disco duro, un sistema operativo debe aplicar un formato de bajo nivel que defina una o más particiones. La operación de formateo requiere el uso de una fracción del espacio disponible en el disco, que dependerá del formato empleado. Además, los fabricantes de discos duros, unidades de estado sólido y tarjetas flash miden la capacidad de los mismos usando prefijos SI, que emplean múltiplos de potencias de 1000 según la normativa IEC yIEEE, en lugar de los prefijos binarios, que emplean múltiplos de potencias de 1024, y son los usados por sistemas operativos de Microsoft. Esto provoca que en algunos sistemas operativos sea representado como múltiplos 1024 o como 1000, y por tanto existan confusiones, por ejemplo un disco duro de 500 GB, en algunos sistemas operativos sea representado como 465 GiB (es decir gibibytes; 1 GiB = 1024 MiB) y en otros como 500 GB.


Las unidades de estado sólido tienen el mismo uso que los discos duros y emplean las mismas interfaces, pero no están formadas por discos mecánicos, sino por memorias de circuitos integrados para almacenar la información. El uso de esta clase de dispositivos anteriormente se limitaba a las supercomputadoras, por su elevado precio, aunque hoy en día ya son muchísimo más asequibles para el mercado doméstico.

1 de mayo de 2013

MANTENIMIENTO PREVENTIVO APRENDICES SENA

MANTENIMIENTO CORRECTIVO

Dentro de las operaciones de mantenimiento, se denomina mantenimiento correctivo, a aquel que corrige los defectos observados en los equipamientos o instalaciones, es la forma más básica de mantenimiento y consiste en localizar averías o defectos y corregirlos o repararlos.
Históricamente es el primer concepto de mantenimiento que se planteo, y el único hasta la primera guerra mundial, dada la simplicidad de las maquinas, equipamientos e instalaciones de la época, mantenimiento era sinónimo de reparar aquello que estaba averiado. Posteriormente se planteo que el mantenimiento no solo tenia que corregir las averías, sino que tenia que adelantarse a ellas garantizando el correcto funcionamiento de las maquinas, evitando el retraso producido por las averías y sus consecuencia, dando lugar a lo que se denomino: mantenimiento preventivo que es el que se hace, preventivamente en equipo en funcionamiento, en evicción de posteriores averías, garantizando un periodo de uso fiable.


MANTENIMIENTO PREVENTIVO

En las operaciones de mantenimiento, el mantenimiento preventivo es el destinado a la conservación de equipos o instalaciones mediante realización de revisión y reparación que garanticen su buen funcionamiento y fiabilidad. El mantenimiento preventivo se realiza en equipos en condiciones de funcionamiento, por oposición al mantenimiento correctivo que repara o pone en condiciones de funcionamiento aquellos que dejaron de funcionar o están dañados.
El primer objetivo del mantenimiento es evitar o mitigar las consecuencias de los fallos del equipo, logrando prevenir las incidencias antes de que estas ocurran. Las tareas de mantenimiento preventivo incluyen acciones como cambio de piezas desgastadas, cambios de aceites y lubricantes, etc. El mantenimiento preventivo debe evitar los fallos en el equipo antes de que estos ocurran.
Algunos de los métodos más habituales para determinar que procesos de mantenimiento preventivo deben llevarse a cabo son las recomendaciones de los fabricantes, la legislación vigente, las recomendaciones de expertos y las acciones llevadas a cabo sobre activos similares.

En informática
Relativo a la informática, el mantenimiento preventivo consiste en la revisión de equipos en funcionamiento para garantizar su buen funcionamiento, tanto de hardware como de software en un ordenador. Estos influyen en el desempeño fiable del sistema, en la integridad de los datos almacenados y en un intercambio de información correcta, a la máxima velocidad posible dentro de la configuración óptima del sistema.
Dentro del mantenimiento preventivo existe software que permite al usuario vigilar constantemente el estado de su equipo, así como también realizar pequeños ajustes de una manera fácil.
Además debemos agregar que el mantenimiento preventivo en general se ocupa en la determinación de condiciones operativas, de durabilidad y fiabilidad de un equipo en mención este tipo de mantenimiento nos ayuda en reducir los tiempos de parada que pueden generarse por mantenimiento correctivo.
En lo referente al mantenimiento preventivo de un producto software, se diferencia del resto de tipos de mantenimiento, especialmente del mantenimiento de actualización, que se produce generalmente tras una petición de cambio por parte del cliente o del usuario final o tras un estudio de posibilidades de mejora en los diferentes módulos del sistema, el preventivo se produce para garantizar el funcionamiento en las condiciones actuales de prestaciones, seguridad y fiabilidad.
Aunque el mantenimiento preventivo es considerado valioso para las organizaciones, existen una serie de fallas en la maquinaria o errores humanos: averías, mal uso, etc. que son impredecibles a la hora de realizar estos procesos de mantenimiento.
El mantenimiento preventivo programado y la sustitución planificada de equipos son dos de las tres políticas disponibles para los ingenieros de mantenimiento