7 de mayo de 2013


Antiguo disco duro de IBM (modelo 62PC, «Piccolo»), de 64,5 MB, fabricado en 1979

File:IBM old hdd mod.jpg

A principios los discos duros eran extraíbles, sin embargo, hoy en día típicamente vienen todos sellados (a excepción, de un hueco de ventilación para filtrar e igualar la presión del aire).

El primer disco duro 1956 fue el IBM 350 modelo 1, presentado con la computadora Ramac I: pesaba una tonelada y su capacidad era de 5 MB. Más grande que una nevera actual, este disco duro trabajaba todavía con válvulas al vacío y requería una consola separada para su manejo.

Su gran mérito consistía en el que el tiempo requerido para el acceso era relativamente diferente entre algunas posiciones de memoria, a diferencia de las cintas magnéticas, donde para encontrar una información dada, era necesario enrollar y desenrollar los carretes hasta encontrar el dato buscado, teniendo muy diferentes tiempos de acceso para cada posición.

La tecnología inicial aplicada a los discos duros era relativamente simple. Consistía en recubrir con material magnético un disco de metal que era formateado en pistas concéntricas, que luego eran divididas en sectores. El cabezal magnético codificaba información al magnetizar diminutas secciones del disco duro, empleando un código binario de «ceros» y «unos». Los bits o dígitos binarios así grabados pueden permanecer intactos años. Originalmente, cada bit tenía una disposición horizontal en la superficie magnética del disco, pero luego se descubrió cómo registrar la información de una manera más compacta.

El mérito del francés Albert Fert y al alemán Peter Grünberg (ambos premio Nobel de Física, por sus contribuciones en el campo del almacenamiento magnético) fue el descubrimiento del fenómeno conocido como magnetorresistencia gigante, permitió construir cabezales de lectura y grabación más sensibles, y compactar más los bits en la superficie del disco duro. De estos descubrimientos, realizados en forma independiente por estos investigadores, se desprendió un crecimiento espectacular en la capacidad de almacenamiento en los discos duros, que se elevó un 60% anual en la década de 1990.

En 1992, los discos duros de 3,5 pulgadas alojaban 250 MB, mientras que 10 años después habían superado los 40.000 MB o 40 gigabytes (GB). En la actualidad, ya contamos en el uso cotidiano con discos duros de más de un terabyte (TB) o millón de megabytes.

En 2005 los primeros teléfonos móviles que incluían discos duros fueron presentados por Samsung y Nokia.

Características de un disco duro

Las características que se deben tener en cuenta en un disco duro son:

• Tiempo medio de acceso: Tiempo medio que tarda la aguja en situarse en la pista y el sector deseado; es la suma del Tiempo medio de búsqueda (situarse en la pista), tiempo de lectura/escritura y la Latencia media (situarse en el sector). 

• Tiempo medio de búsqueda: Tiempo medio que tarda la aguja en situarse en la pista deseada; es la mitad del tiempo empleado por la aguja en ir desde la pista más periférica hasta la más central del disco. 

• Tiempo de lectura/escritura: Tiempo medio que tarda el disco en leer o escribir nueva información, el tiempo depende de la cantidad de información que se quiere leer o escribir, el tamaño de bloque, el numero de cabezales, el tiempo por vuelta y la cantidad de sectores por pista. 

• Latencia media: Tiempo medio que tarda la aguja en situarse en el sector deseado; es la mitad del tiempo empleado en una rotación completa del disco. 

• Velocidad de rotación: Revoluciones por minuto de los platos. A mayor velocidad de rotación, menor latencia media. 

• Tasa de transferencia: Velocidad a la que puede transferir la información a la computadora una vez la aguja esta situada en la pista y sector correctos. Puede ser velocidad sostenida o de pico. 


• COMO FUNCIONA UN DISCO DURO.


• 1. Una caja metálica hermética protege los componentes internos de las partículas de polvo; que podrían obstruir la estrecha separación entre las cabezas de lectura/escritura y los discos, además de provocar el fallo de la unidad a causa de la apertura de un surco en el revestimiento magnético de un disco. 2. En la parte inferior de la unidad, una placa de circuito impreso, conocida también como placa lógica, recibe comandos del controlador de la unidad, que a su vez es controlado por el sistema operativo. La placa lógica convierte estos comandos en fluctuaciones de tensión que obligan al actuador de las cabezas a mover estas a lo largo de las superficies de los discos. La placa también se asegura de que el eje giratorio que mueve los discos de vueltas a una velocidad constante y de que la placa le indique a las cabezas de la unidad en que momento deben leer y escribir en el disco. En un disco IDE (Electrónica de Unidades Integradas), el controlador de disco forma parte de la placa lógica. 3. Un eje giratorio o rotor conectado a un motor eléctrico hacen que los discos revestidos magnéticamente giren a varios miles de vueltas por minuto. El número de discos y la composición del material magnético que lo s recubre determinan la capacidad de la unidad. Generalmente los discos actuales están recubiertos de una aleación de aproximadamente la trimillonésima parte del grosor de una pulgada. 4. Un actuador de las cabezas empuja y tira del grupo de brazos de las cabezas de lectura/escritura a lo largo de las superficies de los platos con suma precisión. Alinea las cabezas con las pistas que forman círculos concéntricos sobre la superficie de los discos. 5. Las cabezas de lectura/escritura unidas a los extremos de los brazos móviles se deslizan a la vez a lo largo de las superficies de los discos giratorios del HD. Las cabezas escriben en los discos los datos procedentes del controlador de disco alineando las partículas magnéticas sobre las superficies de los discos; las cabezas leen los datos mediante la detección de las polaridades de las partículas ya alineadas. 6. Cuando el usuario o su software le indican al sistema operativo que lea o escriba un archivo, el sistema operativo ordena al controlador del HD que mueva las cabezas de lectura y escritura a la tabla de asignación de archivos de la unidad, o FAT en DOS (VFAT en Windows 95). El sistema operativo lee la FAT para determinar en que Cluster del disco comienza un archivo preexistente, o que zonas del disco están disponibles para albergar un nuevo archivo. 7. Un único archivo puede diseminarse entre cientos de Cluster independientes dispersos a lo largo de varios discos. El sistema operativo almacena el comienzo de un archivo en los primeros Cluster que encuentra enumerados como libres en la FAT. Esta mantiene un registro encadenado de los Cluster utilizados por un archivo y cada enlace de la cadena conduce al siguiente Cluster que contiene otra parte mas del archivo. Una vez que los datos de la FAT han pasado de nuevo al sistema operativo a través del sistema electrónico de la unidad y del controlador del HD, el sistema operativo da instrucciones a la unidad para que omita la operación de las cabezas de lectura/escritura a lo largo de la superficie de los discos, leyendo o escribiendo los Cluster sobre los discos que giran después de las cabezas. Después de escribir un nuevo archivo en el disco, el sistema operativo vuelve a enviar las cabezas de lectura/escritura a la FAT, donde elabora una lista de todos los Cluster del archivo.

No hay comentarios:

Publicar un comentario